Search the PBPK Model Repository

Quickly find freely available drug and population models in our PBPK model repository.

The models provided have been collated from published examples which authors have shared in our Published Model Collection or developed as part of various global health projects in our Global Health Collection. This search facility searches both model collections simultaneously.

To contribute published user compound and/or population files, upload your files here: Upload Model Files

A B C D E F G H I J K L M N O P Q R S T U V W X Y Z

|<

<

6

7

8

9

10

11

12

13

14

15

16

17

18

19

>

>|

Found 107 Matches

Pitavastatin_V17R1_ASTAR_20190730

The submitted compound file for Pitavastatin uses ADAM, Full PBPK method 2, enzyme kinetics for metabolism and transporter kinetics for intestinal absorption, permeability limited liver model and MechKiM model. Tissue : Plasma partition coefficients have been modified to include data obtained from rat distribution studies. It has been used together with the unmodified Sim-Healthy Volunteer library file. https://www.altex.org/index.php/altex/article/view/1215

Capmatinib_RES_V21R1_Simcyp_20230615

The RES-Capmatinib_V21 model has been developed primarily as an inhibitor of hepatic OATP1B1 and OATP1B3, and intestinal BCRP using the New GI physiology in Simcyp V21 with altered GI tract population inputs that became default for V22. The verification for 200mg SD, 400mg SD, 600mg SD is performed in the Sim-Healthy Volunteer population and for the 400 mg BID in the Sim-Cancer population. A multiple plasma protein approach is used, accounting for HSA, AGP, IgG and lipoprotein inputs for the populations. The metabolism is simulated using Cytosolic Oxidases (rhAO) and CYP3A4. The Rosuvastatin DDI is using a 400mg BID dosing for Capmatinib in the fasted state.

Piperaquine

Brand Name(s) include: Eurartesim

Disease: Malaria

Drug Class: Antimalarials

Date Updated: January 2022

Related Files: DHA (partner in fixed dose combination)

The model at-a-glance

  Absorption Model

  • First-Order (dose and food-dependent fa – saved in different models)

  Volume of Distribution

  • Full PBPK (Method 2)
  • Notes: Includes a Kp scalar and Kpadipose

  Route of Elimination

  • CYP3A4 (80%), CYP2C9 (10%), CYP2C19 (10%)

  Perpetrator DDI

  • CYP3A4 Inhibitor

  Validation

  • Two clinical studies with fasted and fed groups at varying dose levels describing single and multiple dose exposure of piperaquine were used to verify the PBPK model. All of the simulated studies were within 1.5-fold of the observed values. 
  • A clinical DDI study where piperaquine was the victim of a CYP3A4-mediated DDI was accurately recovered using the PBPK model as well as a CYP3A4 perpetrator DDI with the sensitive substrate midazolam.

  Limitations

  • Requires separate files for low and high dose due to dose-dependant fa​
  • Cmax overprediction, likely due to formulation differences​
  • Additional verification for DDIs would be ideal although studies are currently not available in literature

  Updates in V19

  • Updated in vitro­ data
  • LogP
  • Converted model to full PBPK with Vss predicted through Method 2

 

TB Compound File Collection

V16 TB compound files and associated manuscript, as well as South African TB population file.

|<

<

6

7

8

9

10

11

12

13

14

15

16

17

18

19

>

>|