Search the PBPK Model Repository

Quickly find freely available drug and population models in our PBPK model repository.

The models provided have been collated from published examples which authors have shared in our Published Model Collection or developed as part of various global health projects in our Global Health Collection. This search facility searches both model collections simultaneously.

A B C D E F G H I J K L M N O P Q R S T U V W X Y Z

|<

<

1

2

3

4

5

6

7

8

9

10

11

12

13

14

>

>|

Found 86 Matches

Brand Name(s) include: Kaletra (fixed dose combination with low dose ritonavir)

Disease: HIV

Drug Class: Protease inhibitor

Date of Review: 2020

Number of Models Reviewed: 1

Number of Models added to the Repository: 1

The model at-a-glance

 Publication

Wagner et al., Physiologically-Based Pharmacokinetic Modeling for Predicting the Effect of Intrinsic and Extrinsic Factors on Darunavir or Lopinavir Exposure Co-administered with Ritonavir. J Clin Pharmacol. 2017 October ; 57(10): 1295–1304.  (FDA model)

 Simcyp Version

V13

 Absorption Model

First-Order 

 Volume of Distribution Details

Minimal PBPK

 Route of Elimination

  • CYP3A4 and renal clearance

 Perpetrator DDI

  • CYP3A4 time-dependent inhibitor
  • CYP3A5 time-dependent inhibitor

 Advantages and Limitations

  • Model developed to predict the impact of hepatic impairment on lopinavir PK.
  • Accurately replicates 400 mg dose (therapeutic dose). Overprediction of 200 mg dose and underprediction of 800 mg single dose.
  • DDI with ritonavir works with ritonavir file published in V18, but not the updated V19 file.
  • Perpetrator DDI not verified.

 Model Compound Files

  • v13_res_lopinavir_simcyp_wagner
  • v13_res_ritonavir_simcyp_wagner
Levocetirizine_V14R1_AstraZeneca_20200327
Levocetirizine for pediatric predictions.
Lamotrigine_V17R1_HussonUniversity_20210628
https://pubmed.ncbi.nlm.nih.gov/30460522/ Lamotrigine IR and XR formulations in adults and in children aged between 4 and 17 years. 1) The file is set as FO file (IR formulation), the ADAM model can be activated and the corresponding models, like the segregated transit time model are then available to simulate the XR formulation. 2) The model is using absolute scaling for UGT1A3 and UGT1A4. For V21 the absolute abundance data for UGT1A3 were updated and hence the corresponding ISEF may require adjustment if the file is used in later versions.
Lumefantrine

Brand Name(s) include: Coartem (artemether, lumefantrine), Riamet (artemether, lumefantrine)

Disease: Malaria

Drug Class: Antimalarials

Related Files: Artemether – drug partner in fixed dose combinations

Date Updated: December 2022

The model at-a-glance

 Absorption Model

  • First-Order

 Volume of Distribution Details

  • Full PBPK (Method 2)

Note: Kp scalar and Kp adipose used

 Route of Elimination

CYP3A4 (40%); non-specific hepatic metabolism (60%)

 Perpetrator DDI

  • CYP2D6 Inhibitor

 Validation

  • Two clinical studies describing single dose exposure and two describing multiple dose exposure of lumefantrine were used to verify the PBPK model.
    • The single dose exposures were within 2-fold of observed for both studies.
    • The multiple dose exposures were within 1.25-fold of observed for both studies.
  • Clinical DDI studies with rifampicin and efavirenz in healthy volunteers where lumefantrine was the victim of CYP3A4-mediated DDIs were over-predicted (>2-fold) using the PBPK model.
  • An alternative clinical efavirenz DDI study in HIV patients and a clinical DDI with ritonavir in healthy volunteers were well predicted (within 1.25-fold of observed). As the effect of CYP3A4 inhibition was independently verified and there appeared to be variability in the extent of induction on lumefantrine PK, the fmCYP3A4 of 40% was considered verified.

 Limitations

  • Plasma concentrations of lumefantrine following a single dose are less accurately predicted than those following multiple dose administration. As the Day 7 plasma concentrations following repeat administration of lumefantrine, are more critical (linked to cure rates) than after the first dose, this was deemed acceptable.
  • The model can be used to prospectively predict CYP2D6-mediated DDIs but in the absence of verification of CYP2D6 inhibition, this should be accompanied by appropriate sensitivity analysis.​

 Updates in V19

  • Updates in vitro data based on new information
    • B:P ratio 0.6 -> 0.55
    • CYP2D6 Ki (µM) 2.2 -> 1.8

 

|<

<

1

2

3

4

5

6

7

8

9

10

11

12

13

14

>

>|