Search the PBPK Model Repository

Quickly find freely available drug and population models in our PBPK model repository.

The models provided have been collated from published examples which authors have shared in our Published Model Collection or developed as part of various global health projects in our Global Health Collection. This search facility searches both model collections simultaneously.

To contribute published user compound and/or population files, upload your files here: Upload Model Files

A B C D E F G H I J K L M N O P Q R S T U V W X Y Z

|<

<

1

2

3

>

>|

Found 9 Matches

Azithromycin

Brand Name(s) include: Zithromax

Disease: Malaria

Drug Class: Marcolide Antibiotic

Date Updated: March 2021

The model at-a-glance

  Absorption Model

  • First-Order

  Volume of Distribution

  • Full PBPK (Method 2)

Note: A Kp scalar (0.04) was used in the model

  Route of Elimination

  • No metabolism; a biliary CLint was input based on clinical data

  Perpetrator DDI

  • None

  Validation

  • Two clinical studies describing single and multiple dose exposure of atovaquone were used to verify the PBPK model. 100% of studies were within 1.5-fold.

  Limitations

  • There are some data to suggest atovaquone is an inhibitor of BCRP.  This is currently not included within the model.

  Updates in V19

  • Updated in vitro­ data
    • LogP: 5.8 -> 8.4
    • Caco-2 Papp > 300 x 10-6 cm/s
    • Propranolol Papp 101 x 10-6 cm/s
  • Optimized ka and tlag
  • Converted from minimal PBPK model to full PBPK model

 

Tramadol_V14R1_JohnsonandJohnson_20151029

V12 R1 compound file built to simulate adult Human PK and pediatric PK. Supplied file is for V14 R1. “Physiology-Based IVIVE Predictions of Tramadol from in Vitro Metabolism Data” in Pharm Res January 2015, Volume 32, Issue 1, pp 260-274 http://link.springer.com/article/10.1007%2Fs11095-014-1460-x “Physiologically Based Pharmacokinetic Predictions of Tramadol Exposure Throughout Pediatric Life: an Analysis of the Different Clearance Contributors with Emphasis on CYP2D6 Maturation.” in AAPSJ November 2015, Volume 17, Issue 6, pp 1376-1387 http://link.springer.com/article/10.1208%2Fs12248-015-9803-z

Enfuviridine

Brand Name(s) include: Fuzeon

Disease: HIV

Drug Class: HIV Entry and Fusion Inhibitor

Date of Review: 2020

Number of Models Reviewed: 1

Number of Models added to the Repository: 1

The model at-a-glance

 Publication

Pan, X., Stader, F., Abduljalil, K., Gill, K. L., Johnson, T. N., Gardner, I., & Jamei, M. (2020). Development and Application of a Physiologically-Based Pharmacokinetic Model to Predict the Pharmacokinetics of Therapeutic Proteins from Full-term Neonates to Adolescents. The AAPS journal, 22(4), 76.

 Simcyp Version

V18

 Published Model Application

Prediction of exposure in noenates

 Absorption Model

First Order

 Volume of Distribution Details

Full PBPK

 Route of Elimination

  • Renal filtration
  • Additional systemic clearance

 Perpetrator DDI

  • None 

 Advantages and Limitations

  • Model was developed to predict the PK of enfuviridine in neonates and adolescents.
  • Model was verified in adult and pediatric populations.
  • Model was verified for IV and subcutaneous dosing.
  • Model was developed in V18.  Due to changes in the Simulator, the model would need to be revalidated for use in V20 and subsequent versions.

 Model Compound Files

  • v18_res_enfuviridine_simcyp_pan
  • v18_res_enfuviridine_simcyp_pan_sc_paed

Brand Name(s) include: Malarone

Disease: Malaria

Drug Class: Antimalarials

Date Updated: March 2021

The model at-a-glance

  Absorption Model

  • First-Order

  Volume of Distribution

  • Full PBPK (Method 2)

Note: A Kp scalar (0.04) was used in the model

  Route of Elimination

  • No metabolism; a biliary CLint was input based on clinical data

  Perpetrator DDI

  • None

  Validation

  • Two clinical studies describing single and multiple dose exposure of atovaquone were used to verify the PBPK model. 100% of studies were within 1.5-fold.

  Limitations

  • There are some data to suggest atovaquone is an inhibitor of BCRP.  This is currently not included within the model.

  Updates in V19

  • Updated in vitro­ data
    • LogP: 5.8 -> 8.4
    • Caco-2 Papp 164 > 300 x 10-6 cm/s
    • Propranolol Papp 101 x 10-6 cm/s
  • Optimized ka and tlag
  • Converted from minimal PBPK model to full PBPK model

 

|<

<

1

2

3

>

>|