Search the PBPK Model Repository

Quickly find freely available drug and population models in our PBPK model repository.

The models provided have been collated from published examples which authors have shared in our Published Model Collection or developed as part of various global health projects in our Global Health Collection. This search facility searches both model collections simultaneously.

A B C D E F G H I J K L M N O P Q R S T U V W X Y Z

|<

<

1

2

3

4

5

6

7

8

9

10

11

12

13

14

>

>|

Found 148 Matches

Paclitaxel_RES_V17R1_Simcyp_20180228

Simcyp developed Paclitaxel compound file. Compound summary included. This was developed as a research file and its current status and limitations are outlined in summary document.

Pemigatinib_V19R1_Incyte_20220114

A Pemigatinib PBPK article accepted by CPT PSP with leading author as Tao Ji The submitted workspace files for Pemigatinib is using minimal PBPK model with ADAM functions for Pemigatinib that incorporates CYP3A4-mediated metabolism derived from in vitro data, mass balance data, and clinical PK data, for the purpose of evaluation of clinical DDIs with strong CYP3A inhibitors and/or inducers.

Pitavastatin_V17R1_ASTAR_20190730
The submitted compound file for Pitavastatin uses ADAM, Full PBPK method 2, enzyme kinetics for metabolism and transporter kinetics for intestinal absorption, permeability limited liver model and MechKiM model. Tissue : Plasma partition coefficients have been modified to include data obtained from rat distribution studies. It has been used together with the unmodified Sim-Healthy Volunteer library file. https://www.altex.org/index.php/altex/article/view/1215

Brand Name(s) include : Malarone (fixed dose combination with atovaquone)

Disease: Malaria, prophylaxis against Plasmodium falciparum in travelers

Drug Class: Antimalarials

Date Updated: March 2022

Related Files: Cycloguanil (metabolite of proguanil), Atovaquone (drug partner in fixed dose combinations)

Model at-a-glance

 Absorption Model

  •   First-Order

 Volume of Distribution 

  •   Full PBPK (Method 2)

  Note: Kp scalar used

 Route of Elimination

  •   CYP2C19, CYP3A4, renal clearance

 Perpetrator DDI

  •   CYP2D6 Inhibitor

 Validation

  • Proguanil and cycloguanil files were built using in vitro and clinical (Jeppersen et al., 1997) data
  • 3 clinical studies describing single and multiple dose exposure of proguanil were used to verify the PBPK model. 66% of studies were within 2-fold, of which 33% were within 1.5-fold. 
  • A clinical DDI study where proguanil was the victim of a CYP2C19-mediated DDI was accurately recovered using the PBPK model.  

 Limitations

  • Prediction of proguanil exposure was complicated by not knowing the polymorphism classification of subjects in each study, hence the model performance was deemed acceptable using the criteria of being within 2-fold of observed.
  • Verification needed for perpetrator DDI assessment as literature data is unavailable at this time
  • With a large CLRcomponent and chemical relation to metformin, we hypothesise that proguanil may be a substrate for active transport in the kidney. However, owing to a lack of mechanistic information relating to active transport this cannot be built into the model.​

 Updates in V19

  • Modification of fm values
  • Model converted from minimal to full PBPK distribution model
  • Updated CYP2D6 IC50

|<

<

1

2

3

4

5

6

7

8

9

10

11

12

13

14

>

>|