Search the PBPK Model Repository

Quickly find freely available drug and population models in our PBPK model repository.

The models provided have been collated from published examples which authors have shared in our Published Model Collection or developed as part of various global health projects in our Global Health Collection. This search facility searches both model collections simultaneously.

A B C D E F G H I J K L M N O P Q R S T U V W X Y Z

|<

<

7

8

9

10

11

12

13

14

15

16

17

18

19

20

>

>|

Found 86 Matches

Velpatasvir_RES_V21R1_Simcyp_20230615

Prepared: June 2023 The RES-Velpatasvir_V21 model has been developed primarily as inhibitor of hepatic OATP1B1 and OATP1B3, and intestinal BCRP using the New GI physiology in Simcyp V21 with altered GI tract population inputs that became default in V22. There are limited PK and DDI studies available for Velpatasvir and it is generally used in a fixed dose combination using 100 mg Velpatasvir. Thus, the Velpatasvir file is a Fit-for-purpose PBPK model for 50 mg to 100 mg QD. The Rosuvastatin DDI is a 100 mg QD study. Example workspaces for Velpatasvir PK and the DDI with Rosuvastatin are attached. The BCRP component of Rosuvastatin (V21 using the New GI physiology) was optimised using Eltrombopag and then verified with other BCRP-Inhibitors available on the members area or within the Simcyp Simulator, see attached ‘BCRP-Inhibitor V21’ document for details.

Hyperforin_V17R1_UniversityOfSydney_20190131
The submitted compound file describes the PBPK model for hyperforin (from St John's wort extract). The PBPK model implements first-order absorption model, full-PBPK (method 2) for its distribution and total CLint in HLM (whole organ metabolic clearance) calculated by the retrograde approach. The model accounts for the induction of CYP3A4, 2C9 and 2C19. It has been verified using the healthy population library available in Simcyp SImulator by default. The predictive performance of this model to predict herb-drug interactions with St John's wort was evaluated across a range of CYP substrates as detailed in the publication. https://link.springer.com/article/10.1007%2Fs40262-019-00736-6
Pitavastatin_V17R1_ASTAR_20190730
The submitted compound file for Pitavastatin uses ADAM, Full PBPK method 2, enzyme kinetics for metabolism and transporter kinetics for intestinal absorption, permeability limited liver model and MechKiM model. Tissue : Plasma partition coefficients have been modified to include data obtained from rat distribution studies. It has been used together with the unmodified Sim-Healthy Volunteer library file. https://www.altex.org/index.php/altex/article/view/1215
Darunavir&Ritonavir_V13R2_USFDA_20190719
Compound files from publication: Physiologically Based Pharmacokinetic Modeling for Predicting the Effect of Intrinsic and Extrinsic Factors on Darunavir or Lopinavir Exposure Coadministered With Ritonavir Wagner, C., Zhao, P., Arya, V., Mullick, C., Struble, K. and Au, S (2017). https://doi.org/10.1002/jcph.936 /PMID: 28569994 These two files were used in combination (linked models). Note: Darunavir model also has fu,mic for DDI, and induction parameters for CYP1A that were not captured in Supplemental Table 1. Correction: Ritonavir's pKa2 should be 2.6 instead of 2.8 in Suppl. Table 1. https://accp1.onlinelibrary.wiley.com/doi/full/10.1002/jcph.936

|<

<

7

8

9

10

11

12

13

14

15

16

17

18

19

20

>

>|