Search the PBPK Model Repository

Quickly find freely available drug and population models in our PBPK model repository.

The models provided have been collated from published examples which authors have shared in our Published Model Collection or developed as part of various global health projects in our Global Health Collection. This search facility searches both model collections simultaneously.

To contribute published user compound and/or population files, upload your files here: Upload Model Files

A B C D E F G H I J K L M N O P Q R S T U V W X Y Z

|<

<

1

2

3

4

5

6

7

8

9

10

11

12

13

14

>

>|

Found 107 Matches

Remdesivir&Metabolites_V18R1_Gilead_20210204

Remdesivir (GS-5734) and metabolites adult compound files Adult and pediatric (<40kg and >40kg) workspace files

Brand Name(s) include: Lariam, Mephaquin, Mefliam

Disease: Malaria

Drug Class: Antimalarials

Date Updated: November 2021

The model at-a-glance

  Absorption Model

First-Order

  Volume of Distribution

Full PBPK (Method 2)

  Route of Elimination

CYP3A4 (fm =100); renal clearance (fe = 0.05)

  Perpetrator DDI

  • CYP2C9 Inhibitor
  • CYP2D6 Inhibitor
  • CYP3A4 Inhibitor

  Validation

  • Six clinical studies describing single and multiple dose exposure of mefloquine were used the verify the PBPK model.  Most of the studies (83%) were within 1.5-fold, with all simulations falling within 2-fold of the observed values. 
  • Two clinical DDI studies where mefloquine was the victim of a CYP3A4-mediated DDI were accurately recovered using the PBPK model.

  Limitations

  • Only profiles of plasma concentrations assessed, many studies report blood concentrations​
  • Mefloquine has significant uptake into erythrocytes and haematocrit levels typically not reported​
  • Could be important in disease population (Possible time-varying B/P for Malaria patients?)​
  • Cmax for doses > 750 mg over predicted ​
  • fa possibly decreases with dose, more data needed to fully determine the cause​
  • Most literature data extracted from graphs of mean data, difficulty determining accurate early time points due to poor image quality​
  • Verification needed for perpetrator DDI assessment as literature data is unavailable at this time

  Updates in V19

  • Updated in vitro­ data
    • fup: 0.016 -> 0.015
    • B:P ratio 1.7 -> 1.1 and subsequent re-calculation of CLint using the retrograde approach
  • Converted model to full PBPK distribution model with Vss predicted through Method 2
  • Sensitivity analysis of ka

 

Chloroquine_V18R2_PekingUniversityThirdHospital_20200317

A perfusion limited full PBPK model of chloroquine published in Clin Inf Dis in 2020, the model includes an additional organ that can be used to represent lung tissue accumulation of the drug. Please note a custom dosing for 66 days has been included in the file.

Darunavir&Ritonavir_V13R2_USFDA_20190719

Compound files from publication: Physiologically Based Pharmacokinetic Modeling for Predicting the Effect of Intrinsic and Extrinsic Factors on Darunavir or Lopinavir Exposure Coadministered With Ritonavir Wagner, C., Zhao, P., Arya, V., Mullick, C., Struble, K. and Au, S (2017). https://doi.org/10.1002/jcph.936 /PMID: 28569994 These two files were used in combination (linked models). Note: Darunavir model also has fu,mic for DDI, and induction parameters for CYP1A that were not captured in Supplemental Table 1. Correction: Ritonavir's pKa2 should be 2.6 instead of 2.8 in Suppl. Table 1. https://accp1.onlinelibrary.wiley.com/doi/full/10.1002/jcph.936

|<

<

1

2

3

4

5

6

7

8

9

10

11

12

13

14

>

>|