Search the PBPK Model Repository

Quickly find freely available drug and population models in our PBPK model repository.

The models provided have been collated from published examples which authors have shared in our Published Model Collection or developed as part of various global health projects in our Global Health Collection. This search facility searches both model collections simultaneously.

A B C D E F G H I J K L M N O P Q R S T U V W X Y Z

|<

<

1

2

3

4

5

6

7

8

9

10

11

12

13

14

>

>|

Found 57 Matches

Doxycycline

Brand Name(s) include: Adoxa, Doryx, Monodox, Oracea, Periostat, Vibramycin, Vibra-tabs

Disease: Malaria

Drug Class: Antibiotic

Date Updated: June 2022

The model at-a-glance

  Absorption Model

  • First-Order

  Volume of Distribution

  • Full PBPK (Method 2)
  • Note: A Kp scalar (0.3) was used in the model

  Route of Elimination

  • Biliary = 66%; Renal= 44%

  Perpetrator DDI

  • None

  Validation

  • Seven clinical studies describing single and multiple dose exposure of doxycycline were used to verify the PBPK model. The model predicted AUC values in 86% of studies within 2-fold (100% if one simulated/observed ratio is rounded down from 1.52 to 1.5), of which 57% were within 1.5-fold. 

  Limitations

  • Model is not verified at doses below 100 mg or about 200 mg (dose-linearity of doxycycline is uncertain)
  • Model assumes hyclate, monohydrate and hydrochloride formulations are bioequivalent
  • Model is not developed for the prediction of IV doxycycline
  • Model was developed and verified primarily in healthy volunteer studies (except Newton et al. 2005); appropriateness of extrapolation to acute malaria patients is unknown

  Updates in V19

  • Updated in vitro­ data
    • fu: 0.142 -> 0.23
    • B:P: 1.5 -> 0.78
  • Converted from minimal PBPK model to full PBPK model
  • Elimination changed from user input IV clearance to retrograde clearance with biliary clearance and additional hepatic clearance

 

Levonorgestrel_RES_V21R1_Simcyp_20220401

The V21 RES-Levonorgestrel file has been developed as a substrate of CYP3A4. The file was developed to capture the pharmacokinetics after administration of Levonorgestrel alone or in combination with Ethinyl Estradiol. A workspace and performance summary are available. Levonorgestrel is known to bind to the plasma protein Sex Hormone Binding Globulin and this has been captured in the file by utilising the other protein option in the population.

Enfuviridine

Brand Name(s) include: Fuzeon

Disease: HIV

Drug Class: HIV Entry and Fusion Inhibitor

Date of Review: 2020

Number of Models Reviewed: 1

Number of Models added to the Repository: 1

The model at-a-glance

 Publication

Pan, X., Stader, F., Abduljalil, K., Gill, K. L., Johnson, T. N., Gardner, I., & Jamei, M. (2020). Development and Application of a Physiologically-Based Pharmacokinetic Model to Predict the Pharmacokinetics of Therapeutic Proteins from Full-term Neonates to Adolescents. The AAPS journal, 22(4), 76.

 Simcyp Version

V18

 Published Model Application

Prediction of exposure in noenates

 Absorption Model

First Order

 Volume of Distribution Details

Full PBPK

 Route of Elimination

  • Renal filtration
  • Additional systemic clearance

 Perpetrator DDI

  • None 

 Advantages and Limitations

  • Model was developed to predict the PK of enfuviridine in neonates and adolescents.
  • Model was verified in adult and pediatric populations.
  • Model was verified for IV and subcutaneous dosing.
  • Model was developed in V18.  Due to changes in the Simulator, the model would need to be revalidated for use in V20 and subsequent versions.

 Model Compound Files

  • v18_res_enfuviridine_simcyp_pan
  • v18_res_enfuviridine_simcyp_pan_sc_paed

Brand Name(s) include: Epivir

Disease: HIV

Drug Class: Nucleoside reverse transcriptase inhibitor

Date of Review: 2020

Number of Models Reviewed: 3

Number of Models added to the Repository: 3

The model at-a-glance

Version 13

 Publication

De Sousa Mendes, M., Hirt, D., Urien, S., Valade, E., Bouazza, N., Foissac, F., Blanche, S., Treluyer, J. M., & Benaboud, S. (2015). Physiologically-based pharmacokinetic modeling of renally excreted antiretroviral drugs in pregnant women. British journal of clinical pharmacology, 80(5), 1031–1041.

 Simcyp Version

V13

 Published Model Application

Prediction of exposure in pregnancy

 Absorption Model

First Order

 Volume of Distribution Details

Full PBPK

 Route of Elimination

  • Renal Elimination
  • Includes uptake by OCT2 and efflux by MRP4 in the kidney

 Perpetrator DDI

  • None 

 Advantages and Limitations

  • Model developed in healthy volunteers and verified in pregnant women.

 Model Compound Files

  • v13_res_lamivudine_simcyp_mendex2015

Version 17

 

 Publication

De Sousa Mendes M, Chetty M. Are Standard Doses of Renally-Excreted Antiretrovirals in Older Patients Appropriate: A PBPK Study Comparing Exposures in the Elderly Population With Those in Renal Impairment. Drugs R D. 2019 Dec;19(4):339-350.

 Simcyp Version

V17

 Published Model Application

Prediction of exposure in renal impairment

 Absorption Model

First Order

 Volume of Distribution Details

Full PBPK

 Route of Elimination

  • Renal Elimination
  • Additional non-specific clearance

 Perpetrator DDI

  • None 

 Advantages and Limitations

  • Model developed to extrapolate elderly populations and renally impaired populations.
  • Model was verified in the elderly population

 Model Compound Files

  • v17_res_ lamivudine_simcyp_mendex2019

Version 18

 Publication

Shah, K., Fischetti, B., Cha, A., & Taft, D. R. (2020). Using PBPK Modeling to Predict Drug Exposure and Support Dosage Adjustments in Patients With Renal Impairment: An Example with Lamivudine. Current drug discovery technologies, 17(3), 387–396.

 Simcyp Version

V18

 Published Model Application

Prediction of exposure in renal impairment

 Absorption Model

First Order

 Volume of Distribution Details

Full (mechanistic kidney model)

 Route of Elimination

  • Renal Elimination
  • Includes uptake by OCT2 and efflux by MATE in the kidney

 Perpetrator DDI

  • None 

 Advantages and Limitations

  • Model developed to renally impaired populations.

 Model Compound Files

  • v18_res_ lamivudine_simcyp_shah2020

|<

<

1

2

3

4

5

6

7

8

9

10

11

12

13

14

>

>|