Search the PBPK Model Repository

Quickly find freely available drug and population models in our PBPK model repository.

The models provided have been collated from published examples which authors have shared in our Published Model Collection or developed as part of various global health projects in our Global Health Collection. This search facility searches both model collections simultaneously.

To contribute published user compound and/or population files, upload your files here: Upload Model Files

A B C D E F G H I J K L M N O P Q R S T U V W X Y Z

|<

<

1

2

3

>

>|

Found 9 Matches

Dihydroartemisinin (DHA)

Brand Name(s) include: D-Artepp, Artekin, Diphos, TimeQuin, Eurartesim, Duocotecxin

Disease: Malaria

Drug Class: Antimalarials

Date Updated: March 2022

The model at-a-glance

  Absorption Model

  • First-Order

  Volume of Distribution

  • Full PBPK (Method 2)

Note: Kp scalar used

  Route of Elimination

  • UGT1A9 (50%); UGT2B7(50%)

  Perpetrator DDI

  • CYP1A2 Inhibitor

  Validation

  • Four clinical studies describing single dose exposure of DHA were used to verify the PBPK model.  100% of studies were within 2-fold, of which 75% were within 1.5-fold.  Thus, the model performance was deemed acceptable.

  Limitations

  • The model does not account for the differences in plasma fraction unbound observed in patients compared to healthy volunteers.
  • Verification needed for perpetrator DDI assessment as literature data is unavailable at this time.

  Updates in V19

  • Updated in vitro data
    • Propranolol Papp: 30 cm/s x 106
  • Converted model to full PBPK with Vss predicted through Method 2
  • Updated retrograde clearance

 

Lamotrigine_V17R1_HussonUniversity_20210628

https://pubmed.ncbi.nlm.nih.gov/30460522/ Lamotrigine IR and XR formulations in adults and in children aged between 4 and 17 years. 1) The file is set as FO file (IR formulation), the ADAM model can be activated and the corresponding models, like the segregated transit time model are then available to simulate the XR formulation. 2) The model is using absolute scaling for UGT1A3 and UGT1A4. For V21 the absolute abundance data for UGT1A3 were updated and hence the corresponding ISEF may require adjustment if the file is used in later versions.

Dihydroartemisinin (DHA) from Artesunate

Brand Name(s) include: Camoquin (FDC with amodiaquine)

Disease: Malaria

Drug Class: Antimalarials

Related Drugs: DHA, Amodiaquine

Date Updated: March 2022

The model at-a-glance

  Absorption Model

  • First-Order

  Volume of Distribution

  • Full PBPK (Method 2)

Note: Kp scalar used

  Route of Elimination

  • UGT1A9 (50%); UGT2B7(50%)

  Perpetrator DDI

  • CYP1A2 Inhibitor

  Validation

  • One clinical study describing single dose exposure of DHA was used to verify the PBPK model.  100% of studies were within 2-fold, of which 100% were within 1.5-fold. 

  Limitations

  • The absorption model does not consider the formation of ‘DHA from artesunate’ mechanistically. Instead, an optimized ka and fa were applied to the DHA model to describe the observed plasma concentration-time curve of DHA. The remainder of the DHA model was identical to the DHA model which is described above.
  • The model does not account for the differences in plasma fraction unbound observed in patients compared to healthy volunteers.
  • Verification needed for perpetrator DDI assessment as literature data is unavailable at this time.

  Updates in V19

  • Updated in vitro data
    • Propranolol Papp: 30 cm/s x 106
  • Converted model to full PBPK with Vss predicted through Method 2
  • Updated retrograde clearance

 

Rivaroxaban_V17R1_NationalUniversityofSingapore_20200923

https://dmd.aspetjournals.org/content/47/11/1291/tab-article-info This workspace was developed to recapitulate the magnitude of drug-drug interaction reported between Rivaroxaban and Verapamil as reported by Greenblatt et al. (https://pubmed.ncbi.nlm.nih.gov/29194698/) Note 1: In Table 1 of the publication the Caco-2 Papp (pH 7.4:7.4) was reported as 8 x 10-6 cm/s; however, the Rivaroxaban file in the workspace is using a Caco-2 Papp (pH 7.4:7.4) of 21.8 x 10-6 cm/s. This Papp is in line with the reported scalar in the EXCEL outputs and the Table 1. The obtained Rivaroxaban plasma concentration time profile is in line with the reported Figure 2C in the publication. Note 2: In Table 1 of the publication, input data for Mech KiM are stated; however, the Rivaroxaban file in the workspace is using a User Input for the renal clearance of 3.1 L/h; while the input data for Mech KiM are included in the compound file, they are not activated within the workspace, which is mimicking a DDI with Verapamil and Norverapamil. Note 3: Bile:micelle parameters were changed from 3.4 to 3.5.

|<

<

1

2

3

>

>|