Search the PBPK Model Repository

Quickly find freely available drug and population models in our PBPK model repository.

The models provided have been collated from published examples which authors have shared in our Published Model Collection or developed as part of various global health projects in our Global Health Collection. This search facility searches both model collections simultaneously.

To contribute published user compound and/or population files, upload your files here: Upload Model Files

A B C D E F G H I J K L M N O P Q R S T U V W X Y Z

|<

<

1

2

3

4

5

6

7

8

9

10

11

12

13

14

>

>|

Found 119 Matches

V16 Res Chloroquine Simcyp July 2017

V16 Res Chloroquine Simcyp July 2017

V18 released Simcyp files for antiretroviral drugs

V18 released Simcyp files for antiretroviral drugs

Sulfadoxine

Brand Name(s) include: Fansidar

Disease: Malaria

Drug Class: Sulfonamide

Date Updated: March 2021

The model at-a-glance

  Absorption Model

  • First-Order

  Volume of Distribution

  • Minimal PBPK (User input Vss)

  Route of Elimination

  • Renal clearance (90%); non-specific hepatic metabolism (10%)

  Perpetrator DDI

  • None

  Validation

  • Four clinical studies describing single and multiple dose exposure of sulfadoxine were used to verify the PBPK model. In comparison of predicted vs. observed AUC, 100% of the studies were within 2-fold and 75% were within 1.5-fold. 

  Limitations

  • In the absence of adequate data on the metabolism and excretion of sulfadoxine, it was assumed that 90% was cleared renally and 10% was metabolized by the liver.

  Updates in V19

  • Updated in vitro­ data
    • LogP: 4.22 -> 0.54

 

Simvastatin_Acid_Lactone_RES_V23R2_Simcyp_20241122

The RES-Simvastatin lactone and RES-Simvastatin acid models within the Simcyp Compound Repository have been developed as substrates of CYP3A4, CYP2C8, BCRP (simvastatin lactone), CES1 (simvastatin lactone) and OATP1B1 (simvastatin acid). Additionally, the models account for the interconversion between the lactone and acid forms in the acidic environment of the stomach. Note: Before running a simulation, modify the population to account for gastric luminalmetabolism. To do this, follow these steps:

  1. Go to Population > GI Tract > LuminalMetabolism> Compound > Expression
  2. Set the relative activity to 0 for all GI segments except the stomach

This document provides:

  1. Examples of model performance
  2. A summary of the key pharmacokinetic features of simvastatin lactone and simvastatin acid considered within the model

|<

<

1

2

3

4

5

6

7

8

9

10

11

12

13

14

>

>|