Search the PBPK Model Repository

Quickly find freely available drug and population models in our PBPK model repository.

The models provided have been collated from published examples which authors have shared in our Published Model Collection or developed as part of various global health projects in our Global Health Collection. This search facility searches both model collections simultaneously.

A B C D E F G H I J K L M N O P Q R S T U V W X Y Z

|<

<

4

5

6

7

8

9

10

11

12

13

14

15

16

17

>

>|

Found 115 Matches

Rofecoxib_V18R1_LongIslandUniversity_20210119
This is a compound file for rofecoxib - a mechanism based inhibitor of CYP1A2. The input values for the Rofecoxib PBPK model are listed in table 2 of the publication. The file uses a User input for fa and ka with a CV of 30% for each, a predicted fugut of 0.066 and a predicted Qgut of 16.271 L/h. Competitive CYP1A2 Inhibition with a Ki of 2.25 µM and fumic of 0.88 is also included in the file.
Digoxin_V12R2_Simcyp_20150702
For the file, ADAM and permeability-ltd liver models were used together with the full-PBPK and Rodgers and Rowland method. The file was evaluated using the Jalava et al. 1997 PK data as overlay.
Piperaquine

Brand Name(s) include: Eurartesim

Disease: Malaria

Drug Class: Antimalarials

Date Updated: January 2022

Related Files: DHA (partner in fixed dose combination)

The model at-a-glance

  Absorption Model

  • First-Order (dose and food-dependent fa – saved in different models)

  Volume of Distribution

  • Full PBPK (Method 2)
  • Notes: Includes a Kp scalar and Kpadipose

  Route of Elimination

  • CYP3A4 (80%), CYP2C9 (10%), CYP2C19 (10%)

  Perpetrator DDI

  • CYP3A4 Inhibitor

  Validation

  • Two clinical studies with fasted and fed groups at varying dose levels describing single and multiple dose exposure of piperaquine were used to verify the PBPK model. All of the simulated studies were within 1.5-fold of the observed values. 
  • A clinical DDI study where piperaquine was the victim of a CYP3A4-mediated DDI was accurately recovered using the PBPK model as well as a CYP3A4 perpetrator DDI with the sensitive substrate midazolam.

  Limitations

  • Requires separate files for low and high dose due to dose-dependant fa​
  • Cmax overprediction, likely due to formulation differences​
  • Additional verification for DDIs would be ideal although studies are currently not available in literature

  Updates in V19

  • Updated in vitro­ data
  • LogP
  • Converted model to full PBPK with Vss predicted through Method 2

 

Sulfadoxine

Brand Name(s) include: Fansidar

Disease: Malaria

Drug Class: Sulfonamide

Date Updated: March 2021

The model at-a-glance

  Absorption Model

  • First-Order

  Volume of Distribution

  • Minimal PBPK (User input Vss)

  Route of Elimination

  • Renal clearance (90%); non-specific hepatic metabolism (10%)

  Perpetrator DDI

  • None

  Validation

  • Four clinical studies describing single and multiple dose exposure of sulfadoxine were used to verify the PBPK model. In comparison of predicted vs. observed AUC, 100% of the studies were within 2-fold and 75% were within 1.5-fold. 

  Limitations

  • In the absence of adequate data on the metabolism and excretion of sulfadoxine, it was assumed that 90% was cleared renally and 10% was metabolized by the liver.

  Updates in V19

  • Updated in vitro­ data
    • LogP: 4.22 -> 0.54

 

|<

<

4

5

6

7

8

9

10

11

12

13

14

15

16

17

>

>|