Search the PBPK Model Repository

Quickly find freely available drug and population models in our PBPK model repository.

The models provided have been collated from published examples which authors have shared in our Published Model Collection or developed as part of various global health projects in our Global Health Collection. This search facility searches both model collections simultaneously.

A B C D E F G H I J K L M N O P Q R S T U V W X Y Z

|<

<

7

8

9

10

11

12

13

14

15

16

17

18

19

20

>

>|

Found 91 Matches

Tramadol_V14R1_JohnsonandJohnson_20151029
V12 R1 compound file built to simulate adult Human PK and pediatric PK. Supplied file is for V14 R1. “Physiology-Based IVIVE Predictions of Tramadol from in Vitro Metabolism Data” in Pharm Res January 2015, Volume 32, Issue 1, pp 260-274 http://link.springer.com/article/10.1007%2Fs11095-014-1460-x “Physiologically Based Pharmacokinetic Predictions of Tramadol Exposure Throughout Pediatric Life: an Analysis of the Different Clearance Contributors with Emphasis on CYP2D6 Maturation.” in AAPSJ November 2015, Volume 17, Issue 6, pp 1376-1387 http://link.springer.com/article/10.1208%2Fs12248-015-9803-z

Brand Name(s) include: N/A

Disease: Malaria

Drug Class: Antimalarials

Date Updated: June 2021

Related Files: Amodiaquine (parent drug)

The model at-a-glance

  Absorption Model

  • N/A

  Volume of Distribution

  • Minimal PBPK (Method 2)

  Route of Elimination

  • CLPO (non-specific) and renal clearance

  Perpetrator DDI

  • CYP2D6

  Validation

  • Simulations based on 1 clinical study describing multiple dose exposure of DHEA and 1 DDI study where formation of DHEA was the victim of a CYP2C9 mediated DDI were both within 1.5-fold of the observed values.

  Limitations

  • Clinical data has not been used to verify DEAQ as a perpetrator of CYP2D6-mediated DDIs

  Updates in V19

  • Updated DEAQ Ki for CYP2D6

 

Fostamatinib_RES_V21R1_Simcyp_20230615

Prepared: June 2023 The RES-Fostamatinib-R406_V21 model has been developed primarily as inhibitor of intestinal BCRP using the New GI physiology in Simcyp V21 with altered GI tract population inputs that became default in V22. Fostamatinib rapidly cleaved (hydrolyzed) to R406 (active moiety) in the gut by alkaline phosphatases. Thus, the Fit-for-purpose file with an in vivo CL/F is modelling the metabolite and not the parent. The verification was performed for 100-150 mg SD and BID. The Rosuvastatin DDI uses 100 mg BID. Example workspaces for the metabolite PK and the DDI with Rosuvastatin are attached. The BCRP component of Rosuvastatin (V21 using the New GI physiology) was optimised using Eltrombopag and then verified with other BCRP-Inhibitors available on the members area or within the Simcyp Simulator, see attached ‘BCRP-Inhibitor V21’ document for details.

Fenebrutinib_RES_V21R1_Simcyp_20230615

Prepared: June 2023 The RES-Fenebrutinib_V21 model has been developed primarily as an inhibitor of hepatic OATP1B1 and OATP1B3, and intestinal BCRP using the New GI physiology in Simcyp V21 with altered GI tract population inputs that became default in V22. The RES-Fenebrutinib is verified as solution formulation for 100mg SD, 200mg SD, and 200mg BID. The Rosuvastatin DDI is using a 200 mg BID dosing for Fenebrutinib. Example workspaces for the Fenebrutinib PK and the DDI with Rosuvastatin are attached. The BCRP component of Rosuvastatin (V21 using the New GI physiology) was optimised using Eltrombopag and then verified with other BCRP-Inhibitors available on the members area or within the Simcyp Simulator, see attached ‘BCRP-Inhibitor V21’ document for details.

|<

<

7

8

9

10

11

12

13

14

15

16

17

18

19

20

>

>|