Search the PBPK Model Repository

Quickly find freely available drug and population models in our PBPK model repository.

The models provided have been collated from published examples which authors have shared in our Published Model Collection or developed as part of various global health projects in our Global Health Collection. This search facility searches both model collections simultaneously.

To contribute published user compound and/or population files, upload your files here: Upload Model Files

A B C D E F G H I J K L M N O P Q R S T U V W X Y Z

|<

<

1

2

3

4

5

6

7

8

9

10

>

>|

Found 39 Matches

Cidofovir_V12R1_FDA_20150709

Table 1 of main text, further discussion in supplemental file. Clarification: the value of intrinsic CL for hepatic elimination (0.41) is for undefined human liver microsomes according to retrograde calculation, with a unit of uL/min/mg. The operating hepatic CLint is driven by S9, which has a value of 0.13, obtained from sensitivity analysis to match HLM value above. This clarification will be informed to the journal.

Lopinavir&Ritonavir_V13R2_USFDA_20190719

Compound files from publication: Physiologically Based Pharmacokinetic Modeling for Predicting the Effect of Intrinsic and Extrinsic Factors on Darunavir or Lopinavir Exposure Coadministered With Ritonavir Wagner, C., Zhao, P., Arya, V., Mullick, C., Struble, K. and Au, S (2017). https://doi.org/10.1002/jcph.936 /PMID#: 28569994 The compound file is the final model used for simulations in combination with ritonavir (submitted to repository referencing the same article). Correction: Ritonavir's pKa 2 should be 2.6, reported in Supp. Table 1 was 2.8 https://accp1.onlinelibrary.wiley.com/doi/full/10.1002/jcph.936

Morphine&Morphine-3-Glucuronide_V18R1_UniversityOfNorthCarolina_20201005

The submitted workspace file is for Morphine and Morphine-3-glucuronide compound files, with a full PBPK distribution model, ADAM and permeability-limited liver. The model also includes enterohepatic recycling and cleavage of the glucuronide in the gut lumen. The Sim-Healthy Volunteers population library was modified with regards to the relative enzyme abundance of luminal deglucuronidation. The setting in the workspace reflects the trial design from Stuart-Harris et al., 2000. Stuart-Harris R, Joel SP, McDonald P, Currow D, Slevin ML. The pharmacokinetics of morphine and morphine glucuronide metabolites after subcutaneous bolus injection and subcutaneous infusion of morphine. Br J Clin Pharmacol 49 207-214. (2000)

Brand Name(s) include: Prezista, Prezcobix, Rezolsta

Disease: HIV

Drug Class: Antiretroviral

Date of Review: 2020

Number of Models Reviewed: 2

Number of Models added to the Repository: 2

The model at-a-glance

Publication – MODEL 1

Wagner et al., Physiologically-Based Pharmacokinetic Modeling for Predicting the Effect of Intrinsic and Extrinsic Factors on Darunavir or Lopinavir Exposure Co-administered with Ritonavir. J Clin Pharmacol. 2017 October ; 57(10): 1295–1304.  (FDA model)

 Simcyp Version

V13

 Published Model Application

Prediction of exposure in hepatic impairment

 Absorption Model

  • First-Order
 Volume of Distribution Details
  • Minimal

 Route of Elimination

  • CYP3A4, Non-specific metabolism, renal clearance
  • Bottom-up approach for clearance, fm,CYP3A4 was optimized with clinical DDI data with ketoconazole

 Perpetrator DDI

  • CYP2B6 Competitive Inhibitor
  • CYP2C9 Competitive Inhibitor
  • CYP2C19 Competitive Inhibitor
  • CYP2D6 Competitive Inhibitor
  • CYP3A4 Competitive Inhibitor
  • CYP3A5 Competitive Inhibitor

 Advantages and Limitations

  • Model developed to predict the impact of CYP3A4.
  • fm,CYP3A4 was optimized with clinical DDI data with ketoconazole.
  • Model recovers PK data after IV administration and single and multiple oral doses to healthy volunteers.
  • Model was used to evaluate the impact of hepatic impairment.
  • Perpetrator DDI not verified with clinical data.

 Model Compound Files

  • v18_darunavir_wagner. cmpz
  • v18_darunavir_600_mg_wagner. wksz

Publication – MODEL 2

Colbers, A., Greupink, R., Litjens, C., Burger, D., & Russel, F. G. (2016). Physiologically Based Modelling of Darunavir/Ritonavir Pharmacokinetics During Pregnancy. Clinical pharmacokinetics, 55(3), 381–396. 

 Simcyp Version

V13

 Published Model Application

Prediction of exposure in pregnancy

 Absorption Model

  • ADAM (transporter efflux and influx included)
 Volume of Distribution Details
  • Full (permeability liver model, transporter efflux and influx included)

 Route of Elimination

  • CYP3A4 and renal clearance
  • ‘Bottom-up’ approach for CYP3A4 clearance from HLM data
  • Non-linear CYP3A4 kinetics

 Perpetrator DDI

  • None

 Advantages and Limitations

  • Model developed to extrapolate darunavir pharmacokinetics in pregnancy.
  • CYP3A4 enzyme kinetics derived from HLM data only.
  • Linked with ritonavir PBPK model.
  • Model recovers single dose PK data with and without ritonavir

 Model Compound Files

  • v18_darunavir_colbers. cmpz
  • v18_darunavir_600_mg_colbers. wksz
  • v18_darunavir_with_ritonavir_colbers. wksz

|<

<

1

2

3

4

5

6

7

8

9

10

>

>|