Search the PBPK Model Repository

Quickly find freely available drug and population models in our PBPK model repository.

The models provided have been collated from published examples which authors have shared in our Published Model Collection or developed as part of various global health projects in our Global Health Collection. This search facility searches both model collections simultaneously.

A B C D E F G H I J K L M N O P Q R S T U V W X Y Z

|<

<

1

2

3

4

5

6

7

8

9

10

11

>

>|

Found 44 Matches

Brand Name(s) include: Selzentry

Disease: HIV

Drug Class: HIV Entry and Fusion Inhibitor

Date of Review: 2020

Number of Models Reviewed: 3

Number of Models added to the Repository: 1

The model at-a-glance

 Publication

Kimoto, E., Vourvahis, M., Scialis, R. J., Eng, H., Rodrigues, A. D., & Varma, M. V. S. (2019). Mechanistic Evaluation of the Complex Drug-Drug Interactions of Maraviroc: Contribution of Cytochrome P450 3A, P-Glycoprotein and Organic Anion Transporting Polypeptide 1B1. Drug metabolism and disposition: the biological fate of chemicals, 47(5), 493–503.

 Simcyp Version

V15

 Published Model Application

DDI prediction

 Absorption Model

ADAM; includes P-gp in the intestines

 Volume of Distribution Details

Full PBPK

 Route of Elimination

  • CYP3A4
  • Renal clearance
  • Includes hepatic biliary clearance by OATP1B1

 Advantages and Limitations

  • Model was developed to evaluate DDI of maraviroc as victim.
  • Model was verified with IV and oral data.
  • Model was verified as a victim of interactions with ketoconazole, ritonavir, efavirenz and rifampin

 Model Compound Files

  • v15_res_maraviroc_simcyp_kimoto
  • v15_res_maraviroc_simcyp_kimoto_iv_3mg
  • v15_res_maraviroc_simcyp_kimoto_iv_10mg
  • v15_res_maraviroc_simcyp_kimoto_iv_30mg
  • v15_res_maraviroc_simcyp_kimoto_po_150mg_bid

Brand Name(s) include: Prezista, Prezcobix, Rezolsta

Disease: HIV

Drug Class: Antiretroviral

Date of Review: 2020

Number of Models Reviewed: 2

Number of Models added to the Repository: 2

The model at-a-glance

Publication – MODEL 1

Wagner et al., Physiologically-Based Pharmacokinetic Modeling for Predicting the Effect of Intrinsic and Extrinsic Factors on Darunavir or Lopinavir Exposure Co-administered with Ritonavir. J Clin Pharmacol. 2017 October ; 57(10): 1295–1304.  (FDA model)

 Simcyp Version

V13

 Published Model Application

Prediction of exposure in hepatic impairment

 Absorption Model

  • First-Order
 Volume of Distribution Details
  • Minimal

 Route of Elimination

  • CYP3A4, Non-specific metabolism, renal clearance
  • Bottom-up approach for clearance, fm,CYP3A4 was optimized with clinical DDI data with ketoconazole

 Perpetrator DDI

  • CYP2B6 Competitive Inhibitor
  • CYP2C9 Competitive Inhibitor
  • CYP2C19 Competitive Inhibitor
  • CYP2D6 Competitive Inhibitor
  • CYP3A4 Competitive Inhibitor
  • CYP3A5 Competitive Inhibitor

 Advantages and Limitations

  • Model developed to predict the impact of CYP3A4.
  • fm,CYP3A4 was optimized with clinical DDI data with ketoconazole.
  • Model recovers PK data after IV administration and single and multiple oral doses to healthy volunteers.
  • Model was used to evaluate the impact of hepatic impairment.
  • Perpetrator DDI not verified with clinical data.

 Model Compound Files

  • v18_darunavir_wagner. cmpz
  • v18_darunavir_600_mg_wagner. wksz

Publication – MODEL 2

Colbers, A., Greupink, R., Litjens, C., Burger, D., & Russel, F. G. (2016). Physiologically Based Modelling of Darunavir/Ritonavir Pharmacokinetics During Pregnancy. Clinical pharmacokinetics, 55(3), 381–396. 

 Simcyp Version

V13

 Published Model Application

Prediction of exposure in pregnancy

 Absorption Model

  • ADAM (transporter efflux and influx included)
 Volume of Distribution Details
  • Full (permeability liver model, transporter efflux and influx included)

 Route of Elimination

  • CYP3A4 and renal clearance
  • ‘Bottom-up’ approach for CYP3A4 clearance from HLM data
  • Non-linear CYP3A4 kinetics

 Perpetrator DDI

  • None

 Advantages and Limitations

  • Model developed to extrapolate darunavir pharmacokinetics in pregnancy.
  • CYP3A4 enzyme kinetics derived from HLM data only.
  • Linked with ritonavir PBPK model.
  • Model recovers single dose PK data with and without ritonavir

 Model Compound Files

  • v18_darunavir_colbers. cmpz
  • v18_darunavir_600_mg_colbers. wksz
  • v18_darunavir_with_ritonavir_colbers. wksz
Selegiline&Metabolites_V18R2_Simcyp_Transdermal_20201007
PBPK model of Transdermal Selegiline along with its metabolites. Note 1: The workspace is set up to mimic the clinical data reported by Azzaro et al., Journal of Clinical Pharmacology, 2007;47:1256-1267 Pharmacokinetics and Absolute Bioavailability of Selegiline Following Treatment of Healthy Subjects With the Selegiline Transdermal System (6 mg/24 h): A Comparison With Oral Selegiline Capsules. Note 2: A 6 mg/24 h dose corresponds to the release rate from a 20 mg/20 cm2 patch. The EMSAM®, SELEGILINE TRANSDERMAL SYSTEM, drug label from November 2012 states "EMSAM systems are available in three sizes: 20 mg/20 cm2, 30 mg/30 cm2, and 40 mg/40 cm2 that deliver, on average, doses of 6 mg, 9 mg, or 12 mg, respectively, of selegiline over 24 hours."
Pyrimethamine

Brand Name(s) include: Daraprim

Disease: Malaria

Drug Class: Antimalarials

Date Updated: November 2021

Model at-a-glance

  Absorption Model

  • First-Order

  Volume of Distribution 

  • Full PBPK (Method 2) 

Note: Kp scalar used

  Route of Elimination

  • Non-specific hepatic metabolism (metabolizing enzymes not known)

  Perpetrator DDI

  • OCT1 and OCT2 inhibitor

  Validation

  • Three clinical studies were available for model verification.  100% of simulated Cmax and AUC were within 1.5-fold of observed and hence the model performance was deemed acceptable.

  Limitations

  • The current model does not describe enzyme specific metabolism of pyrimethamine as there are no data for specific routes of metabolism.​

The current model does not mechanistically describe the absorption of pyrimethamine as the ADAM model over-predicts the extent of absorption. Although pyrimethamine is described as well absorbed in some literature, further analysis of the IV and PO data did not support this. 

  Updates in V19

  • Updated in vitro­ data
    • fup: 0.085 -> 0.095

 

|<

<

1

2

3

4

5

6

7

8

9

10

11

>

>|