Quickly find freely available drug and population models in our PBPK model repository.
The models provided have been collated from published examples which authors have shared in our Published Model Collection or developed as part of various global health projects in our Global Health Collection. This search facility searches both model collections simultaneously.
To contribute published user compound and/or population files, upload your files here: Upload Model Files
V12 R1 compound file built to simulate adult Human PK and pediatric PK. Supplied file is for V14 R1. “Physiology-Based IVIVE Predictions of Tramadol from in Vitro Metabolism Data” in Pharm Res January 2015, Volume 32, Issue 1, pp 260-274 http://link.springer.com/article/10.1007%2Fs11095-014-1460-x “Physiologically Based Pharmacokinetic Predictions of Tramadol Exposure Throughout Pediatric Life: an Analysis of the Different Clearance Contributors with Emphasis on CYP2D6 Maturation.” in AAPSJ November 2015, Volume 17, Issue 6, pp 1376-1387 http://link.springer.com/article/10.1208%2Fs12248-015-9803-z
Brand Name(s) include: Emtriva, Truvada
Disease: HIV
Drug Class: Nucleoside reverse transcriptase inhibitor
Date of Review: 2020
Number of Models Reviewed: 2
Number of Models added to the Repository: 2
Publication |
De Sousa Mendes, M., Hirt, D., Urien, S., Valade, E., Bouazza, N., Foissac, F., Blanche, S., Treluyer, J. M., & Benaboud, S. (2015). Physiologically-based pharmacokinetic modeling of renally excreted antiretroviral drugs in pregnant women. British journal of clinical pharmacology, 80(5), 1031–1041. |
Simcyp Version |
V13 |
Published Model Application |
Prediction of exposure in pregnancy |
Absorption Model |
First Order |
Volume of Distribution Details |
Full PBPK |
Route of Elimination |
|
Perpetrator DDI |
|
Advantages and Limitations |
|
Model Compound Files |
|
Publication |
De Sousa Mendes M, Chetty M. Are Standard Doses of Renally-Excreted Antiretrovirals in Older Patients Appropriate: A PBPK Study Comparing Exposures in the Elderly Population With Those in Renal Impairment. Drugs R D. 2019 Dec;19(4):339-350. |
Simcyp Version |
V17 |
Published Model Application |
Prediction of exposure in renal impairment |
Absorption Model |
First Order |
Volume of Distribution Details |
Full PBPK |
Route of Elimination |
|
Perpetrator DDI |
|
Advantages and Limitations |
|
Model Compound Files |
|
Brand Name(s) include: Crixivan
Disease: HIV
Drug Class: Protease inhibitor
Date of Review: 2020
Number of Models Reviewed: 1
Number of Models added to the Repository: 1
Publication |
Ke AB, Nallani SC, Zhao P, Rostami-Hodjegan A, Unadkat JD. A PBPK Model to Predict Disposition of CYP3A-Metabolized Drugs in Pregnant Women: Verification and Discerning the Site of CYP3A Induction. CPT Pharmacometrics Syst Pharmacol. 2012 Sep 26;1(9):e3. |
Simcyp Version |
V13 |
Published Model Application |
Prediction of exposure in pregnancy |
Absorption Model |
First Order |
Volume of Distribution Details |
Full PBPK |
Route of Elimination |
|
Perpetrator DDI |
|
Advantages and Limitations |
|
Model Compound Files |
|
Brand Name(s) include: Daraprim
Disease: Malaria
Drug Class: Antimalarials
Date Updated: November 2021
Absorption Model |
|
Volume of Distribution |
Note: Kp scalar used |
Route of Elimination |
|
Perpetrator DDI |
|
Validation |
|
Limitations |
The current model does not mechanistically describe the absorption of pyrimethamine as the ADAM model over-predicts the extent of absorption. Although pyrimethamine is described as well absorbed in some literature, further analysis of the IV and PO data did not support this. |
Updates in V19 |
|
2 |