Quickly find freely available drug and population models in our PBPK model repository.
The models provided have been collated from published examples which authors have shared in our Published Model Collection or developed as part of various global health projects in our Global Health Collection. This search facility searches both model collections simultaneously.
To contribute published user compound and/or population files, upload your files here: Upload Model Files
Brand Name(s) include: Daraprim
Disease: Malaria
Drug Class: Antimalarials
Date Updated: November 2021
Absorption Model |
|
Volume of Distribution |
Note: Kp scalar used |
Route of Elimination |
|
Perpetrator DDI |
|
Validation |
|
Limitations |
The current model does not mechanistically describe the absorption of pyrimethamine as the ADAM model over-predicts the extent of absorption. Although pyrimethamine is described as well absorbed in some literature, further analysis of the IV and PO data did not support this. |
Updates in V19 |
|
The Bosutinib model uses a full PBPK distribution model (Method 2) and ADAM, where intestinal P-gp is accounted for (Km=0.38 uM, Jmax = 15.45 pmol/min/cm2, RAF = 4). The elimination is described via HLM clearance and assigned to CYP3A4, and a user defined renal clearance. An Immediate Release formulation is simulated with a user-defined solubility-pH profile. The performance of the file is described in Yamazaki et al., 2018 (Application of Physiologically Based Pharmacokinetic Modeling in Understanding Bosutinib Drug-Drug Interactions: Importance of Intestinal P-Glycoprotein - PubMed (nih.gov). In a follow-up paper using V18R2, the inputs for intestinal P-gp were updated (Km = 0.58 uM, Jmax = 67.4 pmol/min/cm2, REF = 1) based on Caco-2 data analysed in SIVA (Pan et al., 2021, Unraveling pleiotropic effects of rifampicin by using physiologically based pharmacokinetic modeling: Assessing the induction magnitude of P-glycoprotein-cytochrome P450 3A4 dual substrates - PubMed (nih.gov)).
Oncology population from publication: Physiologically Based Pharmacokinetic Modeling for Olaparib Dosing Recommendations: Bridging Formulations, Drug Interactions, and Patient Populations Pilla Reddy, V., Bui, K., Scarfe, G., Zhou, D., Learoyd, M. (2018). Clinical Pharmacology and Therapeutics. https://doi.org/10.1002/cpt.1103 https://ascpt.onlinelibrary.wiley.com/doi/10.1002/cpt.1103
http://onlinelibrary.wiley.com/doi/10.1002/cpt.750/full OC model updated from Hsu 2014. Evaluation of the effect of renal impairment on the PK of OAT substrates. NOTE: logP -2.1 in the model. different from Table 1 (-2.4).
6 |