Quickly find freely available drug and population models in our PBPK model repository.
The models provided have been collated from published examples which authors have shared in our Published Model Collection or developed as part of various global health projects in our Global Health Collection. This search facility searches both model collections simultaneously.
To contribute published user compound and/or population files, upload your files here: Upload Model Files
Brand Name(s) include: Prezista, Prezcobix, Rezolsta
Disease: HIV
Drug Class: Antiretroviral
Date of Review: 2020
Number of Models Reviewed: 2
Number of Models added to the Repository: 2
Publication – MODEL 1 |
Wagner et al., Physiologically-Based Pharmacokinetic Modeling for Predicting the Effect of Intrinsic and Extrinsic Factors on Darunavir or Lopinavir Exposure Co-administered with Ritonavir. J Clin Pharmacol. 2017 October ; 57(10): 1295–1304. (FDA model) |
Simcyp Version |
V13 |
Published Model Application |
Prediction of exposure in hepatic impairment |
Absorption Model |
|
Volume of Distribution Details |
|
Route of Elimination |
|
Perpetrator DDI |
|
Advantages and Limitations |
|
Model Compound Files |
|
Publication – MODEL 2 |
Colbers, A., Greupink, R., Litjens, C., Burger, D., & Russel, F. G. (2016). Physiologically Based Modelling of Darunavir/Ritonavir Pharmacokinetics During Pregnancy. Clinical pharmacokinetics, 55(3), 381–396. |
Simcyp Version |
V13 |
Published Model Application |
Prediction of exposure in pregnancy |
Absorption Model |
|
Volume of Distribution Details |
|
Route of Elimination |
|
Perpetrator DDI |
|
Advantages and Limitations |
|
Model Compound Files |
|
Brand Name(s) include: Qualaquin
Disease: Malaria
Drug Class: Antimalarials
Date Updated: 2021
Absorption Model |
First-Order |
Volume of Distribution |
Minimal PBPK (Method 1) |
Route of Elimination |
CYP3A4 (fm = 0.50); renal clearance (fe = 0.1) |
Perpetrator DDI |
|
Validation |
|
Limitations |
|
Updates in V19 |
|
Brand Name: Edurant, Rekambys
Disease: HIV
Drug Class: non-nucleoside reverse transcriptase inhibitor
Version: 21
Date Updated: March 2024
Absorption Model |
First order |
Volume of Distribution Details |
Full PBPK (Method 3) |
Route of Elimination |
|
Perpetrator DDI |
|
Validation |
The refined model was able to recover clinically observed concentration-time profiles of rilpivirine following single and multiple dosing. Seven clinical DDI studies where rilpivirine was administered with either efavirenz, ketoconazole, rifampin, or rifabutin were used to verify the PBPK model of rilpivirine as a victim. In comparison of predicted vs. observed AUC, 85.7% of the studies were within 1.5-fold. Three clinical DDI studies where rilpivirine was administered with either sildenafil, ethinylestradiol, or midazolam were used to verify the PBPK model of rilpivirine as a perpetrator. In comparison of predicted vs. observed AUC, 100% of the studies were within 1.25-fold. |
Limitations |
The net in vivo effect of rilpivirine as either an inhibitor or an inducer of CYP3A appears to be negligible based on the available DDI studies |
Prepared: June 2023 The RES-Eltrombopag_V21 model has been developed primarily as an inhibitor of hepatic OATP1B1 and OATP1B3, and intestinal BCRP using the New GI physiology in Simcyp V21 with altered GI tract population inputs that became default in V22. The file is verified as tablet in the fasted state as that formulation was used in the Rosuvastatin DDI (Allred et al., 2011). The PK for Eltrombopag was evaluated at 25mg, 50mg and 75mg SD; 50mg QD, 100mg QD, 150mg QD, and 200mg QD. Note, the Rosuvastatin DDI with 75mg QD was used to fit the BCRP component in Rosuvastatin V21 file using the New GI physiology. The BCRP component of Rosuvastatin was then verified with other BCRP-Inhibitors available on the members area (as specified in the attached document) or within the Simcyp Simulator. Allred, A. J., C. J. Bowen, J. W. Park, B. Peng, D. D. Williams, M. B. Wire, and E. Lee. 2011. “Eltrombopag Increases Plasma Rosuvastatin Exposure in Healthy Volunteers.” Journal Article. Br J Clin Pharmacol 72 (2): 321–29.
25 |