Search the PBPK Model Repository

Quickly find freely available drug and population models in our PBPK model repository.

The models provided have been collated from published examples which authors have shared in our Published Model Collection or developed as part of various global health projects in our Global Health Collection. This search facility searches both model collections simultaneously.

A B C D E F G H I J K L M N O P Q R S T U V W X Y Z

|<

<

1

2

3

4

5

6

7

8

9

10

11

12

13

14

>

>|

Found 91 Matches

Famotidine_V15R1_USFDA_20170810
http://onlinelibrary.wiley.com/doi/10.1002/cpt.750/full Famotidine compound file in healthy volunteers. Evaluation of the effect of renal impairment on the PK of OAT substrates. NOTE: MW is slightly different between model file and Table 1.
Sitagliptin_V15R1_USFDA_20170810
http://onlinelibrary.wiley.com/doi/10.1002/cpt.750/full Sitagliptin compound file in healthy volunteers. Evaluation of the effect of renal impairment on the PK of OAT substrates. NOTE: in the model Ka is 0.29, Peff is 0.18. Different from Table 1.
Rivaroxaban_V17R1_NationalUniversityofSingapore_20200923
https://dmd.aspetjournals.org/content/47/11/1291/tab-article-info This workspace was developed to recapitulate the magnitude of drug-drug interaction reported between Rivaroxaban and Verapamil as reported by Greenblatt et al. (https://pubmed.ncbi.nlm.nih.gov/29194698/) Note 1: In Table 1 of the publication the Caco-2 Papp (pH 7.4:7.4) was reported as 8 x 10-6 cm/s; however, the Rivaroxaban file in the workspace is using a Caco-2 Papp (pH 7.4:7.4) of 21.8 x 10-6 cm/s. This Papp is in line with the reported scalar in the EXCEL outputs and the Table 1. The obtained Rivaroxaban plasma concentration time profile is in line with the reported Figure 2C in the publication. Note 2: In Table 1 of the publication, input data for Mech KiM are stated; however, the Rivaroxaban file in the workspace is using a User Input for the renal clearance of 3.1 L/h; while the input data for Mech KiM are included in the compound file, they are not activated within the workspace, which is mimicking a DDI with Verapamil and Norverapamil. Note 3: Bile:micelle parameters were changed from 3.4 to 3.5.

Brand Name(s) include: Lariam, Mephaquin, Mefliam

Disease: Malaria

Drug Class: Antimalarials

Date Updated: November 2021

The model at-a-glance

  Absorption Model

First-Order

  Volume of Distribution

Full PBPK (Method 2)

  Route of Elimination

CYP3A4 (fm =100); renal clearance (fe = 0.05)

  Perpetrator DDI

  • CYP2C9 Inhibitor
  • CYP2D6 Inhibitor
  • CYP3A4 Inhibitor

  Validation

  • Six clinical studies describing single and multiple dose exposure of mefloquine were used the verify the PBPK model.  Most of the studies (83%) were within 1.5-fold, with all simulations falling within 2-fold of the observed values. 
  • Two clinical DDI studies where mefloquine was the victim of a CYP3A4-mediated DDI were accurately recovered using the PBPK model.

  Limitations

  • Only profiles of plasma concentrations assessed, many studies report blood concentrations​
  • Mefloquine has significant uptake into erythrocytes and haematocrit levels typically not reported​
  • Could be important in disease population (Possible time-varying B/P for Malaria patients?)​
  • Cmax for doses > 750 mg over predicted ​
  • fa possibly decreases with dose, more data needed to fully determine the cause​
  • Most literature data extracted from graphs of mean data, difficulty determining accurate early time points due to poor image quality​
  • Verification needed for perpetrator DDI assessment as literature data is unavailable at this time

  Updates in V19

  • Updated in vitro­ data
    • fup: 0.016 -> 0.015
    • B:P ratio 1.7 -> 1.1 and subsequent re-calculation of CLint using the retrograde approach
  • Converted model to full PBPK distribution model with Vss predicted through Method 2
  • Sensitivity analysis of ka

 

|<

<

1

2

3

4

5

6

7

8

9

10

11

12

13

14

>

>|