Search the PBPK Model Repository

Quickly find freely available drug and population models in our PBPK model repository.

The models provided have been collated from published examples which authors have shared in our Published Model Collection or developed as part of various global health projects in our Global Health Collection. This search facility searches both model collections simultaneously.

To contribute published user compound and/or population files, upload your files here: Upload Model Files

A B C D E F G H I J K L M N O P Q R S T U V W X Y Z

Found 126 Matches

Lamotrigine_V17R1_HussonUniversity_20210628

https://pubmed.ncbi.nlm.nih.gov/30460522/ Lamotrigine IR and XR formulations in adults and in children aged between 4 and 17 years. 1) The file is set as FO file (IR formulation), the ADAM model can be activated and the corresponding models, like the segregated transit time model are then available to simulate the XR formulation. 2) The model is using absolute scaling for UGT1A3 and UGT1A4. For V21 the absolute abundance data for UGT1A3 were updated and hence the corresponding ISEF may require adjustment if the file is used in later versions.

Pitavastatin_V17R1_ASTAR_20190730

The submitted compound file for Pitavastatin uses ADAM, Full PBPK method 2, enzyme kinetics for metabolism and transporter kinetics for intestinal absorption, permeability limited liver model and MechKiM model. Tissue : Plasma partition coefficients have been modified to include data obtained from rat distribution studies. It has been used together with the unmodified Sim-Healthy Volunteer library file. https://www.altex.org/index.php/altex/article/view/1215

Piperaquine

Brand Name(s) include: Eurartesim

Disease: Malaria

Drug Class: Antimalarials

Date Updated: January 2022

Related Files: DHA (partner in fixed dose combination)

The model at-a-glance

  Absorption Model

  • First-Order (dose and food-dependent fa – saved in different models)

  Volume of Distribution

  • Full PBPK (Method 2)
  • Notes: Includes a Kp scalar and Kpadipose

  Route of Elimination

  • CYP3A4 (80%), CYP2C9 (10%), CYP2C19 (10%)

  Perpetrator DDI

  • CYP3A4 Inhibitor

  Validation

  • Two clinical studies with fasted and fed groups at varying dose levels describing single and multiple dose exposure of piperaquine were used to verify the PBPK model. All of the simulated studies were within 1.5-fold of the observed values. 
  • A clinical DDI study where piperaquine was the victim of a CYP3A4-mediated DDI was accurately recovered using the PBPK model as well as a CYP3A4 perpetrator DDI with the sensitive substrate midazolam.

  Limitations

  • Requires separate files for low and high dose due to dose-dependant fa​
  • Cmax overprediction, likely due to formulation differences​
  • Additional verification for DDIs would be ideal although studies are currently not available in literature

  Updates in V19

  • Updated in vitro­ data
  • LogP
  • Converted model to full PBPK with Vss predicted through Method 2

 

Dolutegravir_RES_V23R1_Simcyp_20240404

Simcyp developed dolutegravir compound file. Compound summary including an outline on the current status and limitations included.

The RES-Dolutegravir model has been developed primarily as a UGT1A1 and CYP3A4 substrate, and as an inhibitor of renal MATE1 and OCT2 transporters. MATE1 and OCT2 inhibition parameters have been optimized to capture impact of dolutegravir on metformin pharmacokinetics but have not been independently verified. In vitro observed inhibition of MATE2-K by dolutegravir has not been included as the parameter could not be optimized and verified with the substrate models and clinical data available at the time of dolutegravir model development.

|<

<

10

11

12

13

14

15

16

17

18

19

20

21

22

23

>

>|