Search the PBPK Model Repository

Quickly find freely available drug and population models in our PBPK model repository.

The models provided have been collated from published examples which authors have shared in our Published Model Collection or developed as part of various global health projects in our Global Health Collection. This search facility searches both model collections simultaneously.

To contribute published user compound and/or population files, upload your files here: Upload Model Files

A B C D E F G H I J K L M N O P Q R S T U V W X Y Z

|<

<

1

2

3

4

5

6

7

8

9

10

11

12

13

14

>

>|

Found 126 Matches

Sulfamethoxazole_MechKiM_V16R1_UniversityOfManchester_20210421

https://doi.org/10.1124/jpet.118.251413 Sulfamethoxazole compound file with MechKiM

Enfuviridine

Brand Name(s) include: Fuzeon

Disease: HIV

Drug Class: HIV Entry and Fusion Inhibitor

Date of Review: 2020

Number of Models Reviewed: 1

Number of Models added to the Repository: 1

The model at-a-glance

 Publication

Pan, X., Stader, F., Abduljalil, K., Gill, K. L., Johnson, T. N., Gardner, I., & Jamei, M. (2020). Development and Application of a Physiologically-Based Pharmacokinetic Model to Predict the Pharmacokinetics of Therapeutic Proteins from Full-term Neonates to Adolescents. The AAPS journal, 22(4), 76.

 Simcyp Version

V18

 Published Model Application

Prediction of exposure in noenates

 Absorption Model

First Order

 Volume of Distribution Details

Full PBPK

 Route of Elimination

  • Renal filtration
  • Additional systemic clearance

 Perpetrator DDI

  • None 

 Advantages and Limitations

  • Model was developed to predict the PK of enfuviridine in neonates and adolescents.
  • Model was verified in adult and pediatric populations.
  • Model was verified for IV and subcutaneous dosing.
  • Model was developed in V18.  Due to changes in the Simulator, the model would need to be revalidated for use in V20 and subsequent versions.

 Model Compound Files

  • v18_res_enfuviridine_simcyp_pan
  • v18_res_enfuviridine_simcyp_pan_sc_paed
Darunavir_Ritonavir_V13R2_USFDA_20190719

Compound files from publication: Physiologically Based Pharmacokinetic Modeling for Predicting the Effect of Intrinsic and Extrinsic Factors on Darunavir or Lopinavir Exposure Coadministered With Ritonavir Wagner, C., Zhao, P., Arya, V., Mullick, C., Struble, K. and Au, S (2017). https://doi.org/10.1002/jcph.936 /PMID: 28569994 These two files were used in combination (linked models). Note: Darunavir model also has fu,mic for DDI, and induction parameters for CYP1A that were not captured in Supplemental Table 1. Correction: Ritonavir's pKa2 should be 2.6 instead of 2.8 in Suppl. Table 1. https://accp1.onlinelibrary.wiley.com/doi/full/10.1002/jcph.936

Brand Name(s) include: Malarone

Disease: Malaria

Drug Class: Antimalarials

Date Updated: March 2021

The model at-a-glance

  Absorption Model

  • First-Order

  Volume of Distribution

  • Full PBPK (Method 2)

Note: A Kp scalar (0.04) was used in the model

  Route of Elimination

  • No metabolism; a biliary CLint was input based on clinical data

  Perpetrator DDI

  • None

  Validation

  • Two clinical studies describing single and multiple dose exposure of atovaquone were used to verify the PBPK model. 100% of studies were within 1.5-fold.

  Limitations

  • There are some data to suggest atovaquone is an inhibitor of BCRP.  This is currently not included within the model.

  Updates in V19

  • Updated in vitro­ data
    • LogP: 5.8 -> 8.4
    • Caco-2 Papp 164 > 300 x 10-6 cm/s
    • Propranolol Papp 101 x 10-6 cm/s
  • Optimized ka and tlag
  • Converted from minimal PBPK model to full PBPK model

 

|<

<

1

2

3

4

5

6

7

8

9

10

11

12

13

14

>

>|